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ABSTRACT
In this paper, we study the robustness of lidar-based
3D detection & tracking of UAVs. We investigate the
effective detection ranges of different UAVs based on
their construction materials and the effective range &
3D detection performance of a specific UAV at differ-
ent atmospheric visibility conditions. Further, we ex-
amine to what extent lidar-based systems can track
a drone’s trajectories via real-world experiments and
point cloud data processing. Using a COTS lidar-based
system (Livox Mid-40), we confirm that we can track
UAVs in a fine-grained manner at up to 80m distance
under various environmental conditions (i.e., morning,
afternoon, and night).

CCS CONCEPTS
• Computer systems organization → Real-time system
architecture.

KEYWORDS
Lidar-based detection, UAV detection and tracking, Tar-
get reflectivity, Light robustness

1 INTRODUCTION
Drones are becoming an increasing reality, both in terms
of massive holiday light shows with over a thousand
drones [13] and also on the modern battlefield [7]. We ex-
pect the trend to grow dramatically as new applications
popularize the mass use of drones, such as commer-
cial package delivery to businesses and homes [2, 3, 8]
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Figure 1: Robustness analysis and localization concept for
lidar-based drone monitoring
and autonomous monitoring of critical infrastructure
such as roads, buildings, and transmission lines, lead-
ing to crowded air spaces in urban environments. Such
drones pose a risk to sensitive airspaces such as around
airports [14], so it is important to have accurate, ro-
bust, and low-cost technology capable of scalably de-
tecting, localizing, and tracking drones in real-time.
Conventional approaches for detecting & tracking air-
borne vehicles such as radar [23] are not well suited
for drones due to the low radar cross section (RCS)
of drones, which are often small and consist of many
non-metallic components, as well as the low altitude
at which most drones fly, making the drones difficult
to distinguish from the ground clutter. Passive radio
frequency (RF) sensing systems [17, 18]) can detect and
localize a single drone, but have not shown an ability
to scale and rely on the drone to constantly transmit.
Video-based sensing systems have also been investi-
gated, for example the camera-based small flying object
detection which is robust with the change in object ap-
pearence & background [20] and the low complexity
UAV to UAV detection & tracking scheme using au-
tonomous see & avoid system [15]. However, all video-
based systems perform poorly in darkness, inclement
and foggy weather. Acoustic-based drone monitoring
performs poorly in high acoustic noise environments
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such as cities, airports, or factories. Also, since the UAVs
generate sounds at similar frequency ranges and am-
plitudes, separating the sound of individual UAVs for
reliable swarm monitoring is an unsolved challenge
and the emergence of silent drones makes the acoustic-
based drone detection even more challenging. Most of
the variety of RF, video, and audio techniques for drone
tracking summarized in [19] focus on monitoring a sin-
gle or a few drones but not yet a reliable drone swarm
tracking system [21].

In this paper, we characterize the performance of a
lidar-based (Light Detection And Ranging) system for
drone detection, and tracking, focusing on robustness
of range estimation to different drone models & robust-
ness to different lighting conditions. Figure 1 illustrates
our lidar-based 3D detection and tracking system for
drones. While there has been limited prior work begin-
ning to explore the feasibility of using lidar for drone
detection and tracking [1, 5, 9], the literature is largely
lacking in a more detailed study and understanding of
the robustness and practical utility of such systems un-
der a variety of different real-world conditions, such as
different models that may affect range estimation, and
varying lighting conditions that may affect point cloud
gathering and tracking of drones. As a result, the main
contributions of this paper are summarized as follows:
• We explore the effective range of lidar-based drone

3D localization with different UAV models.
• We investigate the robustness of UAV detection dur-

ing different environmental lighting conditions by
examining reflectivity across different ranges.

• We present drone tracking & trajectory measurements
at different lighting conditions using 3D point cloud.

2 FUNDAMENTALS OF LIDAR
DETECTION AND RELATED WORK

We describe the parameters affecting the performance
of lidar-based solution and plan to conduct real-world
experiments to analyze those impacts along with the
limitations of existing lidar-based systems.

2.1 Lidar Fundamentals
Lidar is a remote sensing technology that uses laser
pulses to measure the distance to a target object or sur-
face and used in topographical mapping, atmospheric
sensing [10], and object detection and tracking. The
round-trip time (τ) of the laser pulses is used to cal-
culate the range (R) of the target based on the speed of
light in a vacuum (c) and the average group refractive
index of the optical path between the lidar system and
the target (η), then R = (c/2η). However, the range that
a lidar system can effectively operate at is influenced by
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Figure 2: Fundamentals of lidar scan of target object

two main factors: (1) the sensitivity of its photoreceiver
and (2) the strength of the optical signal that is returned
based on the distance of the target. The factors that affect
the strength of the signal return are examined, which
include the energy of the laser pulses, the conditions
of the atmosphere, and the characteristics of the target
such as its size, orientation, and surface properties.

Atmospheric conditions play a vital role in the lidar
performance which eventually depends on visibility or
lighting conditions, spreading and scattering effect of
the environment, rain, fog, etc. The external factors that
control the amount of distortion and attenuation are the
distance through the atmosphere, and environmental
factors like visibility, temperature, and turbulence.

The optical power of laser pulses is affected by both
absorption and scattering, which can be described by
the attenuation coefficient (σ) measured in m−1. The op-
tical energy of the laser beam within its cross-sectional
area (Abeam) at a distance (R) can be estimated using this
equation which incorporates all the defining factors:

Eopt = (ETx./Abeam)exp(−σR)

= (ETx./π(ϕR)2)exp(−σR) (1)

Here ETx. is the transmitted laser power and ϕ is half
of the divergence angle of the laser beam. Therefore,
the effective range is directly dependent on optical en-
ergy used ETx., environmental impact termed as atten-
uation σ, and the laser beam quality or collimation ϕ.
The lidar detection mechanism and effective range is
demonstrated in Figure 2.

2.2 Lidar Applications and Related Works
Lidar technology provides highly accurate and detailed
3D data, making it valuable for various applications.
These include 3D object detection for autonomous driv-
ing [16], creating detailed seafloor maps [12], monitor-
ing urban flooding [22], forest inventory estimation for
carbon sequestration [4], and archaeological research [10].

There are few works using lidar to localize UAVs or
other intrusions, including a technique for monitoring
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Figure 3: Lidar scan of UAVs for point cloud analysis using
Livox Mid-40

the trajectory of drones using lidar [1], a method to
detect targets in a complex background through relative
state estimation [6], and identifying drones from the
cross-polarization ratio analysis of the optical echo [24].

In particular, using lidar, a single drone can be de-
tected up to 35 m using a Velodyne HDL-64 lidar [9]
while another work shows that ground-based aerial tar-
get detection detecting drones with sparse detection
methods & active tracking [5]. A lidar-based drone tra-
jectory monitoring technique has also been proposed
and evaluated [1]. While these approaches are promis-
ing, they lacked a detailed range analysis across differ-
ent UAV models, and also no consideration was made
about the lidar range performance when the atmosphere,
visibility, or light environment is changed. In addition,
no attempt was made to compare UAV tracking & trajec-
tory analysis at different lighting conditions. We address
these limitations in this work.

3 RANGE ESTIMATION ANALYSIS
This section discusses the feasibility and robustness of
the lidar-based system in detecting UAVs flying at dis-
tances via a series of outdoor and real-world experi-
ments. These experiments are designed to answer the
following questions: (1) What is the detection range of
UAVs using a lidar-based monitoring system?, (2) Does
drone type and shape affect the lidar-based system perfor-
mance?, (3) What factors limit the detection range?

3.1 Study Design
In this study, we place a Livox Mid-40 lidar in an open
field and fly two UAVs (DJI Phantom 4 (white) and
DJI Inspire 2 (black)) in the Field of View (FOV) of the
Livox device at distances ranging from 5m to 200m
as shown in Figure 3, we designate them as UAV1 &
UAV2 respectively for the sake of discussion through
the entire paper. We are able to detect UAV1 and UAV2
at distances up to 80m and 50m, respectively. All the
lidar scan experiments are done with a 1s frame rate,

25m 50m10m

10m 50m

UAV1

UAV2

# of points = 153 # of points = 38 # of points = 13 

80m

# of points = 4 

25m 80m

a) 

# of points = 0 # of points = 7 # of points = 70 # of points = 213 

b) 

Figure 4: Detection range estimation of lidar using point
clouds of a) UAV1 & b) UAV2

@At 10m @At 25m

@At 50m @At 80m

Figure 5: Reflectivity histograms of UAV1 & UAV2 with
varying distances

which is chosen to have a tradeoff between point cloud
density & tracking of moving UAVs.

3.2 Preliminary Results
The measurements we received from the outdoor lidar
scan of the 2 UAVs are accumulated in terms of point
cloud analysis, the number of reflected points from each
UAV, and the histogram of reflectivity of each UAV. In
Figure 4 it can be seen that UAV1 can be detected up
to 80m while UAV2 is detected up to 50m. Note that
despite UAV2 being significantly larger than UAV1, the
detection range of UAV2 is much shorter than UAV1.
And this can be explained and analyzed in terms of the
reflectivity of each UAV where white UAV1 has much
more reflectivity, RI , than black UAV2. The reflectivity
distribution, the number of reflected points & individual
average reflectivity is shown in Figure 5 & Table 1 which
are being obtained for the segmented point clouds of
UAV1 & UAV in Figure 4. From the histograms of the
2 UAVs in Figure 5, it is evident that the reflectivity
of UAV1 is much higher than UAV2 which results in
a higher effective range for UAV1. This result conforms
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UAV 1 UAV 2

Distance Reflected
Points Count

Average
Reflectivity

Reflected
Points Count

Average
Reflectivity

10m 153 25.21 213 3.68
25m 38 19.45 45 2.16
50m 13 18.24 7 2.57
80m 4 18.25 0 0

Table 1: Number of reflected points and average reflectivity
of UAV1 & UAV2 during afternoon with 1s frame.

with the theory that reflectivity is related to laser fluence or
optical energy in Equation 1.

The reflectivity of a material can be affected by var-
ious factors, including its optical properties, surface
roughness, and the wavelength and intensity of the in-
cident laser light. When a laser beam interacts with a
material, it can be absorbed, transmitted, or reflected,
depending on the characteristics of the material and
the laser parameters. Therefore, the effective range of
a UAV or any other target object depends on its reflec-
tivity, physical material, or atmospheric impacts. The
atmospheric impact will be discussed in the next section
whereas the impact of physical material & reflectivity
on optical energy is analyzed in this section. Table 1
shows the number of reflected points and mean reflec-
tivity value of the 2 UAV’s physical material. It suggests
that since UAV2 is larger in dimension it will have a
greater number of reflected points at close proximity
than UAV1 but since it has a very low average reflectiv-
ity value, the optical energy attenuation with distance
is more severe on it than in UAV1. This in turn, limits
the detection range of UAV2 up to 50 m.

4 VISIBILITY ROBUSTNESS OF LIDAR
This section discusses the impact of the atmosphere on
UAV detection in terms of visibility & lighting envi-
ronment. This time we conduct lidar scan experiments
only with UAV1 (since it has greater range than UAV2)
during morning, afternoon, and night at the same place
and with the same background to analyze the effect of
different lighting conditions on the UAV detection. We
choose these 3 different time periods of a day to allow
us to conduct at 3 different visibility conditions, where
the morning had the highest visibility, then during the
afternoon the natural light faded and during the night
no sunlight was available.

4.1 Impact of Environmental Conditions on
Lidar Performance

From Equation 1, it can be seen that the attenuation fac-
tor (σ) encompasses all the environmental impacts, in-
cluding visibility due to different natural light, weather

conditions, and other factors. Since visibility plays a vi-
tal role in determining the effective range of lidar while
scanning for UAVs or other aerial intrusions, the robust-
ness analysis of lidar at different lighting conditions
can shed light on an important design aspect of any
integrated intrusion detection & localization system.

4.2 Robustness Analysis at Different
Lighting Conditions

Here, we present the robust performance of lidar in de-
tecting & localizing UAVs irrespective of different light-
ing conditions. In Figure 6, the point clouds of UAV1
from each lidar scan during morning, afternoon & night
at different distances are shown with the surrounding
background with trees and the segmented version of
only the UAV. From the point clouds, it is observed
that detectability & range at all 3 different lighting con-
ditions do not vary much, however, the background
clutter is less visible at night. This can be explained by
the fact that during the night there is very low ambient
light which makes it difficult for the trees or other natu-
ral clutters here to reflect enough optical energy to pass
the object identification threshold of lidar.

We then analyze the point clouds in terms of the re-
flectivity parameter of the target object which is UAV1
from the segmented point clouds and present in terms
of reflectivity histogram at different lighting conditions
with varied distance in Figure 7. The number of reflected
points and the mean reflectivity of UAV1 is shown in Ta-
ble 2. There is a trend across all lighting conditions that
as the distance increases, both the number of collected
points and the mean value of the reflectivity decrease.
However, at the most extreme distances, the mean reflec-
tivity actually increases. This effect could arise because
the reflection point cloud is dominated only by the shini-
est most reflective parts of the UAV at great distances.

Morning Afternoon Night

Distance Reflected
Points
Count

Average
Reflec-
tivity

Reflected
Points
Count

Average
Reflec-
tivity

Reflected
Points
Count

Average
Reflec-
tivity

10m 847 23.1 153 25.21 491 41.52
25m 95 19.47 38 19.45 38 23.84
50m 25 16.92 13 18.24 7 19.71
80m 7 17.85 4 18.25 1 25

Table 2: Number of reflected points and average reflectivity
of UAV1 at different environments with 1s frame.

5 3D UAV TRACKING
This section explores the performance of UAV tracking
using lidar scans. We perform continuous lidar scans
during morning, afternoon & night to observe the mo-
tion sequence of UAV1 and estimate its trajectory within
the scan time.
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Figure 6: Point cloud analysis of UAV1 with varying distances at different natural light: a) morning, b) afternoon, c) night
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Figure 7: Reflectivity histogram of UAV1 with varying distances at different natural light

5.1 UAV Motion Tracking
Tracking by utilizing lidar point cloud data analysis re-
quires a tradeoff between frame time control and point
cloud density because the point cloud is denser with a
higher frame rate but a higher frame rate also fails to
capture the UAV motion. Hence, we choose 1 second
as the frame rate for our experiments so that there is
not a significant discontinuity between reflected points
from the UAV when it is at the designated speed set by
our experiment (DJI Phantom 4 average speed: 31mph
in P-mode). Using the point cloud obtained from the
lidar scan we can follow the UAV motion and ultimately
track it by using single frames or snapshots from the
lidar scan. Figure 8 shows a UAV1 point cloud sequence
of single frames for a specific instance of time and dis-
tance of 10m from the lidar where the UAV is hovering
and then moving with varying speeds between 0 to 20
mph. Since the lidar point cloud is 3D, we analyze the
UAV motion in all 6 degrees-of-fredom but to main-
tain brevity only upward-downward & left-right single
frame analysis are shown here at a fixed distance for
motion tracking. From this single-frame analysis, we ob-
serve that target motion and movements can be tracked
efficiently within the field of view.

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

Figure 8: 3D tracking of UAV motion at 10m away from a
sequence of frames

5.2 UAV Trajectory Monitoring using
Multiple Frame Point Clouds

We perform lidar scan experiments with UAV1 for about
3 minutes continuously so that we can estimate a sizable
trajectory of the UAV. After data acquisition and mod-
ifications using the Livox Viewer 0.11.0 software and
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Figure 9: 3D trajectory measurement of UAV from lidar scan
during a) Morning, b) Afternoon, and c) Night.

processing & computations using Matlab [11] and the
Lidar Viewer app, we illustrate a time-lapse point cloud
that merges all the single frame point clouds within the
scan duration. As shown in Figure 9, we show the tra-
jectory of UAV1 over experiments during the morning,
afternoon & night to observe whether the UAV trajec-
tory measurement is robust for all lighting conditions.
First, we present the UAV point cloud data with the
background data & then present the segmented UAV-
only point cloud data, and in both cases, the trajectory
of UAV1 is clearly visible. From these trajectory mea-
surements, the movements & motion of the UAV can be
analyzed and processed. Our focus was on visualizing
the trajectories so we used a variety of post-processing
to compute and plot the trajectories, making the pro-
cess non-real-time. If we strip out the visualization and
conversions between different software vendors and
instead build a custom implementation, we feel that
real-time tracking should be feasible and leave this for
future work. Next, to provide a more fine-grained anal-
ysis of the ability of 3D lidar tracking to follow the tra-
jectories of the UAV, we present a more detailed study
of the frame-by-frame point cloud statistics. We present
the results in Table 3. In the experiment, we vary the
trajectory and range of the UAV and calculate this statis-
tical location data for all 3 continuous lidar scans in the
morning, afternoon & night. Still, for the sake of brevity,
we show only a sample frame group of 10 frames se-
lected from an afternoon lidar scan between 7s to 16s,
with a frame time of 1s. We see from the table the com-
puted distances traveled by the UAV between frames
d f rame as well as the corresponding speeds. The maxi-
mum distance traveled is 4.8m, corresponding to a UAV
speed of 20.17 mph. This shows the ability of lidar to
track drones over a wide range of speeds.

Sample Frame Group

Frame No. d f rame(m) Speed(mph)

1 - -
2 0.88 4.62
3 2.74 16.76
4 4.80 20.17
5 3.20 20.96
6 2.4 14.23
7 0.53 3.09
8 0.10 0.08
9 0.15 0.14

10 0.02 0.03
Table 3: Statistical analysis of multi-frame UAV location.

6 CONCLUSION AND FUTURE WORK
This paper explored lidar performance in terms of de-
tection range, robustness with different visibility condi-
tions for the localization of UAVs and potential for UAV
tracking regardless of lighting conditions. This paper
found that the color of the UAV significantly affected
its reflectivity and hence the range of detection, with a
smaller white UAV being detectable at a further range
than a larger black UAV despite the latter’s advantage in
size. Another important finding is that UAV localization
is robust even in low light conditions, without losing
detection range. This shows the usefulness of lidar in de-
tecting UAVs in darkness which might be useful for in-
trusion detection at night near airports, power stations,
or secured prison systems. In addition, the experiments
show that lidar-based tracking of drone trajectories is
also largely unaffected by lighting conditions and can
track a variety of different speeds of drones, which re-
veals the potential of robust drone tracking using lidar.

These preliminary studies suggest the promise of ap-
plying 3D lidar for robust detection, localization & track-
ing of UAVs, but also suggest promising future direc-
tions of research. We plan to employ a sophisticated
zoom mechanism to extend the detection range to reach
at least 200m without increasing the laser power. While
we are currently working on a mobile UAV tracking
system with the ability to track higher-speed drones
without losing the point cloud density,we also plan
to implement a real-time system that can employ AI
and machine learning algorithms to recognize and track
drones with different shape, material & reflectivity. Our
current project goal also encompasses the detection &
tracking of drone swarms in 3D and testing the robust-
ness of lidar detection with inclement weather condi-
tions (e.g. snow, fog, rain, etc.).
Acknowledgments. This material is based partly upon
work supported by the National Science Foundation
under Award Numbers 2132112 and 2152357.
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